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We propose a scheme of iterative adjustments to the profile score to deal with incidental-parameter bias in
models for stratified data with few observations on a large number of strata. The first-order adjustment is
based on a calculation of the profile-score bias and evaluation of this bias at maximum-likelihood estimates of
the incidental parameters. If the bias does not depend on the incidental parameters, the first-order adjusted
profile score is fully recentered, solving the incidental-parameter problem. Otherwise, it is approximately
recentered, alleviating the incidental-parameter problem. In the latter case, the adjustment can be iterated
to give higher-order adjustments, possibly until convergence. The adjustments are generally applicable (e.g.,
not requiring parameter orthogonality) and lead to estimates that generally improve on maximum likelihood.
We examine a range of nonlinear models with covariates. In many of them, we obtain an adjusted profile score
that is exactly unbiased. In the others, we obtain approximate bias adjustments that yield much improved
estimates, relative to maximum likelihood, even when there are only two observations per stratum.
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INTRODUCTION

Consider inference about a finite-dimensional parameter ψ based on m observations from each of n inde-

pendent strata in the presence of incidental parameters λi (i = 1, 2, . . . , n), one for each stratum. It is well

known that maximum likelihood does not, in general, yield consistent point estimates of ψ as the number

of strata, n, increases while their size, m, is kept fixed; see Neyman and Scott (1948). Only in some cases is

it possible to separate inference about ψ from inference about the λi by means of a conditional or marginal

likelihood; see Andersen (1970) and Lancaster (2000) for examples. Estimation of ψ may, alternatively, be

based on an integrated likelihood, as discussed in Kalbfleisch and Sprott (1970), but the choice of prior

density on λi may be hard to justify.

An alternative route is to work with either a modified likelihood (Barndorff-Nielsen 1983) or an approxi-

mate conditional likelihood (Cox and Reid 1987). In a rectangular-array embedding (Li et al. 2003), Sartori

(2003) showed that the modified likelihood generally leads to superior inference. Lancaster (2002) found simi-

lar improvements for approximate conditional likelihoods. Arellano and Bonhomme (2009) extended these to

situations where an information-orthogonalizing reparameterization is not possible. Hahn and Newey (2004)

developed bias corrections with similar gains.

In this paper, we study estimation of ψ based on adjustments to the profile score, as in McCullagh and

Tibshirani (1990). The basic (or first-order) adjustment is to calculate the bias of the profile score, evaluate it

at maximum-likelihood estimates of the λi, and subsequently recenter the profile score. When the bias is free

of incidental parameters, the so-adjusted profile score is fully recentered and leads to consistent estimation of
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ψ under Neyman-Scott asymptotics. We find that this is the case in a number of relevant models. When the

bias is not free of incidental parameters, the first-order adjusted profile score leads to point estimates whose

bias is O(m−2), as opposed to the standard O(m−1). We show that the adjustment can be iterated, possibly

until convergence, generating higher-order adjustments. Assuming sufficient regularity, at each iteration the

order of the bias is reduced, and the fully iterated bias adjustment may yield consistent estimates under

Neyman-Scott asymptotics. We study the adjustments analytically and numerically in a range of nonlinear

models. Invariably, the profile score adjustments are found to be very effective, either leading to consistent

estimates under Neyman-Scott asymptotics or, else, to estimates with much smaller bias than maximum

likelihood, even for m = 2. In the examples examined, we also find that, when a conditional or marginal

likelihood exists, its score function coincides with the fully iterated adjusted profile score.

Focusing on the profile score has several advantages. First, the calculation of its bias will reveal whether

the presence of incidental parameters, in fact, leads to an incidental-parameter problem. In contrast, verifying

whether ψ and λi are information orthogonal can be a cumbersome task, not in the least because orthogo-

nality may hold in one parameterization but not in another. Second, if the profile-score bias is zero or free of

incidental parameters, or if the fully iterated adjusted profile score has zero bias, the adjusted profile-score

equation is unbiased. This property is not shared by approaches based on the modified likelihood which, in

general, do not fully recenter the profile score and, in cases where there is no incidental-parameter problem,

can induce bias rather than eliminate it. Third, the adjustment to the profile score does not require calculating

sample-space derivatives. The computational burden involved in setting up modified profile likelihoods is one

major reason for the development of approximations to it, such as those of Cox and Reid (1987) and Severini

(1998), for example. Fourth, profile-score adjustments can always be computed, analytically or numerically.

They do not require the existence of a sufficient statistic or an information-orthogonal parameterization.

It is well known that both do not exist, in general (Severini 2000). Fifth, the iterative procedure leads to

higher-order improvements relative to the other general approaches available. The fully iterated adjustment

yields estimators whose bias, in principle, shrinks exponentially fast in m. This is of particular importance

given the difficulty with which the other methods can be modified to yield higher-order improvements.

1. ADJUSTING THE PROFILE SCORE

1.1. Bias of the profile score

Suppose we are given a rectangular-array data set {yij ; i = 1, . . . , n; j = 1, . . . ,m} with n strata and m

observations for each stratum. The observations yij are sampled from a probability density (or mass) function

f(yij ;ψ, λi), where ψ and λi are finite-dimensional parameters. The density may depend on covariates but

this will be suppressed in the notation. The parameter of interest is ψ, with λ = (λ1, . . . , λn) being treated

as a nuisance parameter. For simplicity of the exposition, we shall assume that the observations yij are

independent across i and j, although some examples with dependent data will also be discussed.

The profile log-likelihood and score functions for ψ, and their ith contributions, are

l(ψ) =

n∑
i=1

li(ψ), li(ψ) =

m∑
j=1

log f(yij ;ψ, λ̂i(ψ)),

s(ψ) =

n∑
i=1

si(ψ), si(ψ) =

m∑
j=1

∇ψ log f(yij ;ψ, λ̂i(ψ)),

where λ̂i(ψ) = arg maxλi

∑m
j=1 log f(yij ;ψ, λi) is the maximum likelihood estimator of λi for fixed ψ. Let
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ψ̂ = arg maxψ l(ψ) be the maximum likelihood estimator of ψ and assume sufficient regularity to ensure that

ψ̂ satisfies s(ψ̂) = 0. Neyman and Scott (1948) showed that ψ̂ is not, in general, a consistent estimator of

the true value of ψ as n→∞ while m remains fixed. This is the incidental-parameter problem; it has been

documented in numerous examples in the literature.

When ψ̂ is inconsistent, the inconsistency is due to a bias in the profile score function. One may view s(ψ)

as an approximation to the infeasible profile score function

sin(ψ) =

n∑
i=1

sini (ψ), sini (ψ) =

m∑
j=1

∇ψ log f(yij ;ψ, λi(ψ)),

where λi(ψ) = arg maxλ∗i Eψ,λi

∑m
j=1 log f(yij ;ψ, λ

∗
i ) and Eψ,λi(·) denotes the expectation under the density

f(·;ψ, λi). So s(ψ) differs from sin(ψ) in that s(ψ) uses λ̂(ψ) = (λ̂1(ψ), . . . , λ̂n(ψ)) whereas sin(ψ) uses the

infeasible λ(ψ) = (λ1(ψ), . . . , λn(ψ)), a difference that often introduces a bias. While sin(ψ) is unbiased, i.e.,

Eψ,λs
in(ψ) = 0 (see, e.g., Pace and Salvan 2006), it is often the case that

Eψ,λs(ψ) 6= 0,

causing ψ̂ to be inconsistent for fixed m and the limit distribution of ψ̂ to be incorrectly centered unless

m/n→∞; see, e.g., Portnoy (1988) and Li et al. (2003). Typically, when the profile score is biased, its bias

is of order O(n) and the inconsistency of ψ̂, as n→∞ with fixed m, is of order O(m−1).

1.2. Iterated bias adjustment

Our approach is to bias-adjust s(ψ) and, therefore, requires calculating Eψ,λs(ψ), analytically or numerically,

for given ψ and λ. Three cases arise:

(a) Eψ,λs(ψ) = 0;

(b) Eψ,λs(ψ) 6= 0 but Eψ,λs(ψ) is free of λ;

(c) Eψ,λs(ψ) 6= 0 and Eψ,λs(ψ) depends on λ.

In Case (a), s(ψ) = 0 is an unbiased estimating equation and ψ̂ is consistent as n→∞ for fixed m. The

interesting point here is that a simple calculation, that of Eψ,λs(ψ), will reveal so. In the examples, we show

that the profile score is unbiased in the Poisson and the exponential regression model.

In Case (b), ψ̂ is inconsistent for fixed m, but an unbiased estimating equation is readily obtained. The

adjusted profile score

sa(ψ) = s(ψ)− Eψ,λs(ψ)

is unbiased by construction and feasible because it does not depend on λ. Neyman and Scott (1948) already

noted that, when Eψ,λs(ψ) is free of λ, a fixed-m consistent estimator can be obtained by centering the

profile score. We will discuss several models where this is the case.

In Case (c), consider the first-order adjusted profile score

s(1)a (ψ) = s(ψ)− Eψ,λ̂(ψ)s(ψ).

McCullagh and Tibshirani (1990) suggested this approximate centering of the profile score in the generic con-

text where nuisance parameters are profiled out of the likelihood. Under regularity conditions, the first-order

adjusted profile score reduces the large-m asymptotic bias of the profile score by a factor O(m−1). The profile

score bias is Eψ,λs(ψ) = Eψ,λ(ψ)s(ψ) =
∑n
i=1Eψ,λi(ψ)si(ψ), which we are approximating by Eψ,λ̂(ψ)s(ψ) =
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si(ψ). Thus, in each Eψ,λi(ψ)si(ψ) the infeasible λi(ψ) is approximated by λ̂i(ψ). This intro-

duces a relative bias of order O(m−1) as m→∞ (see, e.g., DiCiccio et al. 1996), i.e., Eψ,λi
Eψ,λ̂i(ψ)

si(ψ) =(
1 +O(m−1)

)
Eψ,λi

si(ψ) and, on summing over i, Eψ,λEψ,λ̂(ψ)s(ψ) =
(
1 +O(m−1)

)
Eψ,λs(ψ). Therefore,

relative to profile score, the first-order adjusted profile score reduces the bias from Eψ,λs(ψ) = O(n) to

Eψ,λs
(1)
a (ψ) = O(n/m). The adjustment removes the first-order asymptotic bias from s(ψ); see also Sartori

(2003).

In Case (c), the adjustment can be iterated, each iteration giving a further asymptotic improvement. The

bias Eψ,λs
(1)
a (ψ) can be approximated by Eψ,λ̂(ψ)s

(1)
a (ψ), again with relative bias O(m−1), leading to the

second-order adjusted profile score

s(2)a (ψ) = s(1)a (ψ)− Eψ,λ̂(ψ)s
(1)
a (ψ)

= s(ψ)− 2Eψ,λ̂(ψ)s(ψ) + Eψ,λ̂(ψ)

(
Eψ,λ̂(ψ,λ̂(ψ))s(ψ)

)
,

with bias Eψ,λs
(2)
a (ψ) = O(n/m2). Here, λ̂(ψ, λ̂(ψ)) is the maximum likelihood estimator of λ, for fixed ψ,

based on a data set {y∗ij ; i = 1, . . . , n; j = 1, . . . ,m} where y∗ij is sampled from f(·;ψ, λ̂i(ψ)). The structure

of the iterated adjustments is now apparent. Defining the p-fold iteration of Eψ,λ̂(ψ)(·) by the recursion

E
(0)

ψ,λ̂(ψ)
(·) = (·),

E
(p)

ψ,λ̂(ψ)
(·) = Eψ,λ̂(ψ)

(
E

(p−1)
ψ,λ̂(ψ,λ̂(ψ))

(·)
)
, p = 1, 2, . . . ,

the kth order adjusted profile score is

s(k)a (ψ) = s(k−1)a (ψ)− Eψ,λ̂(ψ)s
(k−1)
a (ψ)

= s(ψ)−
k∑
p=1

(
k

p

)
(−1)p−1E

(p)

ψ,λ̂(ψ)
s(ψ),

with bias O(n/mk), given sufficient regularity. The associated estimator, ψ̂
(k)
a , is defined as the solution to

s
(k)
a (ψ) = 0. The adjustment may be iterated until convergence. Upon existence of the limits, we define

the (fully iterated) adjusted profile score as sa(ψ) = limk→∞ s
(k)
a (ψ) and the adjusted score estimator as

ψ̂a = limk→∞ ψ̂
(k)
a .

1.3. Further discussion of Case (c)

Our intuitive motivation for iterating the adjustment, possibly until convergence, uses large-m arguments.

Nevertheless, the fully iterated adjustment may have good properties even whenm is very small. In particular,

it may occur that ψ̂a is fixed-m consistent whereas ψ̂ and ψ̂
(k)
a (for any finite k) are not. Also, in cases where

ψ̂a is not fixed-m consistent, it may still reduce the asymptotic bias of ψ̂. Such situations arise when ψ is not

point identified for a given m. Obviously, when point identification fails, sa(ψ) cannot deliver an unbiased

estimating equation, i.e., it must be the case that Eψ,λsa(ψ) is generically nonzero or that sa(ψ) vanishes in

the neighborhood of the true value of ψ. Yet, in either case, ψ̂a may still be well defined (i.e., the required

limit exists) and have better properties than ψ̂. We will discuss examples to illustrate these points.

Implementing the adjustment and solving sa(ψ) = 0 or s
(k)
a (ψ) = 0 for some chosen k requires evaluating

Eψ,λs(ψ) for given ψ and λ. Often Eψ,λs(ψ) is not available in closed form, but it can be approximated

by simulation. For the sake of bias adjustment, any number of simulations suffices, even a single one. For

reasons of accuracy, however, the number of simulations should not be too small, unless perhaps in models
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where evaluating s(ψ) is computationally costly. For the higher-order adjustments, which require evaluating

the terms E
(p)

ψ,λ̂(ψ)
s(ψ), we suggest to use a small number of simulations in the inner expectations and a

larger number in the outermost expectation, and to keep the basic stream of random numbers constant for

all values of ψ.

The classification (a)–(c) helps to discern if there is an incidental-parameter problem for ψ and, if so, how

it may be solved or mitigated. When ψ is multidimensional, there may be an incidental-parameter problem

only for a subvector of ψ. Let ψ and s(ψ) be conformably partitioned as

ψ =

(
ψ1

ψ2

)
, s(ψ) =

(
sψ1

(ψ)
sψ2(ψ)

)
.

Then, if for any ψ′2,

Eψ,λsψ1
(ψ′) = 0 for ψ′ =

(
ψ1

ψ′2

)
,

Eψ,λsψ2
(ψ) 6= 0,

there is an incidental-parameter problem for ψ2 but it does not carry over to ψ1. Note that Eψ,λsψ1
(ψ) = 0

is necessary but not sufficient to prevent the incidental-parameter problem for ψ2 to carry over to ψ1.

2. EXAMPLES

Many of our examples are conditional models of a variable yij given a vector of covariates xij . Accordingly,

expectations are taken conditionally on the covariates.

2.1. Case (a) models

Poisson regression. Consider Poisson random variables yij with mean µij = λi exp(x>ijψ). The prob-

ability mass function is f(yij ;ψ, λi) = µ
yij
ij exp(−µij)/yij !. For fixed ψ, the maximum likelihood estimator

of λi is λ̂i(ψ) =
∑
j yij/

∑
j exp(x>ijψ). The profile log-likelihood and score are

l(ψ) =
∑
i,j

yij

− log
∑
j

exp(x>ijψ) + x>ijψ

 ,

s(ψ) =
∑
i,j

yij

(
−
∑
j exp(x>ijψ)xij∑
j exp(x>ijψ)

+ xij

)
.

(We omit additive constants from l(ψ) in all examples.) Taking expectations gives Eψ,λs(ψ) = 0. There

is no incidental-parameter problem in this model and, accordingly, the adjustment leaves the profile score

unaltered.

Blundell et al. (1999) gave a closely related derivation. Further, Lancaster (2002) showed that ψ and

λ are likelihood orthogonal after an interest-respecting reparametrization (i.e., the unprofiled likelihood

is separable), which is another way of showing that maximum likelihood is consistent. The modifications

of Barndorff-Nielsen (1983) and Cox and Reid (1987) to the profile likelihood also leave it unchanged. The

profile likelihood is equal to the conditional likelihood given
∑
j yij , i = 1, . . . , n, which is a sufficient statistic

for λ. Hence, from Hahn (1997) it follows that maximum likelihood attains the semiparametric efficiency

bound.

Exponential regression. Let yij be exponentially distributed with scale µij = λi exp(x>ijψ), i.e.,

f(yij ;ψ, λi) = µ−1ij exp(−yij/µij). Then λ̂i(ψ) = m−1
∑
j yij exp(−x>ijψ) and the profile log-likelihood and
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score are

l(ψ) =
∑
i,j

− log
∑
j

yit exp(−x>ijψ)− x>ijψ

 ,

s(ψ) =
∑
i,j

(∑
j yij exp(−x>ijψ)xij∑
j yij exp(−x>ijψ)

− xij

)
.

Now write ∑
j yij exp(−x>ijψ)xij∑
j yij exp(−x>ijψ)

=

∑
j zijxij∑
j zij

,

zij = yij/µij being independent unit-exponential random variables. Because the zij are identically dis-

tributed,

E

(∑
j zijxij∑
j zij

)
=
∑
j

E

(
zij∑
j zij

)
xij =

1

m

∑
j

xij .

Hence Eψ,λs(ψ) = 0. There is no incidental-parameter problem. Again, the profile likelihood coincides with

the modified profile likelihood of Barndorff-Nielsen (1983). It is also identical to the marginal likelihood of

the ratios yij/yi1, which is free of λ.

2.2. Case (b) models

Many normal means. This is the classic Neyman and Scott (1948) example of the incidental-

parameter problem. The goal is to infer the variance ψ from independent observations yij ∼ N (λi, ψ).

The profile score is

s(ψ) = −nm
2ψ

+
1

2ψ2

∑
i,j

(yij − yi)2,

with bias Eψ,λs(ψ) = −n(2ψ)−1, free of λ, and ψ̂ = (nm)−1
∑
i,j(yij − yi)2 converges to (1 −m−1)ψ. The

solution of the adjusted profile score equation sa(ψ) = 0 is ψ̂/(1 −m−1), which is consistent for fixed m.

Numerous other approaches lead to the same estimator.

A regression version of this model has yij ∼ N (λi + x>ijψ1, ψ2), with ψ consisting of ψ1 and ψ2. Here, the

bias of the profile score for ψ1 is zero and for ψ2 it is −n(2ψ2)−1, as in the no-covariate case. Again, solving

the adjusted profile score equation yields the standard solution: (i) the maximum likelihood estimator of ψ1

(which is least-squares applied to the pooled group-wise demeaned data) is unaltered; (ii) a one-degree-of-

freedom correction is applied to the maximum likelihood estimator of ψ2.

Autoregression. Since Nickell (1981), autoregressive models have become another classic instance of

the incidental-parameter problem. Suppose that

yij = λi + ψ1yij−1 + εij , εij ∼ N (0, ψ2),

where we observe yij for j = 0, 1, . . . ,m and leave the initial observations, yi0, unrestricted (i.e., we condition

on them). The profile score is

s(ψ) =

(
−ψ−12

∑
i(yi − ψ1yi−)>Myi−

−(2ψ2)−1(nm− ψ−12

∑
i(yi − ψ1yi−)>M(yi − ψ1yi−))

)
,
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where yi = (yi1, yi2, . . . , yim)>, yi− = (yi0, yi1, . . . , yim−1)>, M = I−m−1ιι>, I is the m×m identity matrix,

and ι is an m-vector of ones. Using backward substitution, it follows that

Eψ,λs(ψ) =

(
−n (m− 1)

−1∑m−1
j=1 (m− j)ψj−11

−n(2ψ2)−1

)
,

which is free of λ.

Lancaster (2002) showed that λ and ψ can be orthogonalized and derived a Cox and Reid (1987) conditional

profile log-likelihood, whose score function coincides with the adjusted profile score. When the model is

extended to include covariates or more than one autoregressive term, the bias of the profile score still admits

a closed form and remains free of incidental parameters. In contrast, an orthogonalizing reparameterization

of λ and ψ no longer exists; see Dhaene and Jochmans (2015).

Weibull regression. Suppose that yij is Weibull distributed with survival function exp(−(yij/µij)
ψ2),

where µij = λi exp(x>ijψ1). Then λ̂i(ψ) = (m−1
∑
j wij(ψ))1/ψ2 , where wij(ψ) = (yij exp(−x>ijψ1))ψ2 . The

profile log-likelihood and score are

l(ψ) =
∑
i,j

logψ2 + ψ2 log yij − log
∑
j

wij(ψ)− ψ2x
>
ijψ1

 ,

s(ψ) =
∑
i,j

(
ψ2

∑
j wij(ψ)xij/

∑
j wij(ψ)− ψ2xij

ψ−12 + log yij − ψ−12

∑
j wij(ψ) logwij(ψ)/

∑
j wij(ψ)− x>ijψ1

)
.

A calculation summarized in the Appendix gives the bias of the profile score as

Eψ,λs(ψ) =

(
0

nψ−12

)
,

which is free of λ. The solutions of s(ψ) = 0 and sa(ψ) = 0 differ for both ψ1 and ψ2. However, there is an

incidental-parameter problem only for ψ2 because, as shown in the Appendix, the first component of s(ψ′),

with ψ′ = (ψ1, ψ
′
2), has zero expectation for any ψ′2.

Several other approaches lead to the same result. Lancaster (2000) showed that λ and ψ can be orthogo-

nalized. Integrating the reparameterized λ from the likelihood using a uniform prior gives a Cox and Reid

(1987) conditional profile likelihood. Chamberlain (1985) suggested to use the marginal likelihood of the

ratios yij/yi1, which is free of λ. The conditional profile log-likelihood and the marginal log-likelihood are

identical, and their score functions are identical to the adjusted profile score function.

Gamma regression. Here, yij is gamma distributed with scale µij = λi exp(x>ijψ1) and shape parame-

ter ψ2. The density is f(yij ;ψ, λi) = yψ2−1
ij µ−ψ2

ij exp(−yij/µij)/Γ(ψ2) and the maximum likelihood estimator

of λi for fixed ψ is λ̂i(ψ) = ψ−12 m−1
∑
j yij exp(−x>ijψ1). The profile log-likelihood and score are

l(ψ) =
∑
i,j

− log Γ(ψ2) + ψ2 log(mψ2yij)− ψ2 − ψ2 log
∑
j

yij exp(−x>ijψ1)− ψ2x
>
ijψ1

 ,

s(ψ) =
∑
i,j

(
ψ2

∑
j yij exp(−x>ijψ1)xij/

∑
j yij exp(−x>ijψ1)− ψ2xij)

−psi(ψ2) + log(mψ2yij)− log
∑
j yij exp(−x>ijψ1)− x>ijψ1

)
,

where psi(z) = ∇z log Γ(z), the digamma function. A calculation, given in the Appendix, yields

Eψ,λs(ψ) =

(
0

nm(log(mψ2)− psi(mψ2))

)
,
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which is free of λ. In this model, again, there is an incidental-parameter problem only for ψ2. The solutions

of s(ψ) = 0 and sa(ψ) = 0 coincide for ψ1 but differ for ψ2.

The adjusted profile score function is equal to the score function of the marginal log-likelihood of the

ratios yij/yi1, which is free of λ (Chamberlain 1985).

Inverse Gaussian regression. Suppose yij has the inverse Gaussian distribution with mean µij =

λi exp(x>ijψ1) and variance µ3
ij/ψ2. The density is f(yij ;ψ, λi) =

√
ψ2/(2πy3ij) exp(−ψ2(2yij)

−1(yijµ
−1
ij −1)2).

For fixed ψ, the maximum likelihood estimator of λi is λ̂i(ψ) =
∑
j yij exp(−2x>ijψ1)/

∑
j exp(−x>ijψ1). The

profile log-likelihood and score are

l(ψ) =
∑
i,j

(
2−1 logψ2 − ψ2(2yij)

−1(yij µ̂
−1
ij − 1)2

)
,

s(ψ) =
∑
i,j

(
ψ2(yij µ̂

−2
ij − µ̂

−1
ij )xij

(2ψ2)−1 − (2yij)
−1(yij µ̂

−1
ij − 1)2

)
,

where µ̂ij = λ̂i(ψ) exp(x>ijψ1). The profile score bias is

Eψ,λs(ψ) =

(
0

n(2ψ2)−1

)
,

as shown in the Appendix. Here, again, there is an incidental-parameter problem only for ψ2, and the

solutions of s(ψ) = 0 and sa(ψ) = 0 coincide for ψ1 but differ for ψ2.

2.3. Case (c) models

Binary matched pairs. Consider n pairs yi = (yi1, yi2) of independent binary variables with success

probabilities Pr(yi1 = 1) = (1 + e−λi)−1 and Pr(yi2 = 1) = (1 + e−λi−ψ)−1; cf. Cox (1958). The parameter

ψ is the log odds ratio and it is well known that plimn→∞ψ̂ = 2ψ. The classic solution to this incidental-

parameter problem is to use the conditional likehood given yi1 + yi2, i = 1, . . . , n (Rasch 1961, Andersen

1970). The conditional maximum likelihood estimator is consistent and semi-parametrically efficient (Hahn

1997). Here, we show that the adjusted profile score coincides with the score of the conditional log-likelihood.

For pairs of the form yi = (0, 0) or yi = (1, 1), the maximum likelihood estimator of λi for any fixed ψ

is λ̂i(ψ) = −∞ and λ̂i(ψ) = +∞, respectively, so li(ψ) = si(ψ) = 0 for such pairs. For pairs of the form

yi = (0, 1) or yi = (1, 0), λ̂i(ψ) = −ψ/2. The profile log-likehood and score are

l(ψ) = −2n01 log(1 + e−ψ/2)− 2n10 log(1 + eψ/2),

s(ψ) =
n01

1 + eψ/2
− n10

1 + e−ψ/2
,

where n01 an n10 are the number of (0, 1) and (1, 0) pairs, respectively, with expected values

Eψ,λn01 =
∑
i

(1 + eλi)−1(1 + e−λi−ψ)−1,

Eψ,λn10 =
∑
i

(1 + e−λi)−1(1 + eλi+ψ)−1 = e−ψEψ,λn01.

Defining aψ = (1− e−ψ/2)(1 + eψ/2)−1, the bias of the profile score is

Eψ,λs(ψ) = aψEψ,λn01,

which depends on λ via Eψ,λn01. Now consider the sequence s
(k)
a (ψ) of finite-order adjusted profile scores.



Profile-score adjustments 9

We have

Eψ,λ̂(ψ)n01 = (n01 + n10)(1 + e−ψ/2)−2,

Eψ,λ

(
Eψ,λ̂(ψ)n01

)
= bψEψ,λn01,

where bψ = (1 + e−ψ)(1 + e−ψ/2)−2. Hence, for k = 1, 2, . . .,

E
(k)

ψ,λ̂(ψ)
s(ψ) = aψb

k−1
ψ Eψ,λ̂(ψ)n01,

Eψ,λ

(
E

(k)

ψ,λ̂(ψ)
s(ψ)

)
= aψb

k
ψEψ,λn01,

and we obtain

s(k)a (ψ) = s(ψ)−
k∑
p=1

(
k

p

)
(−1)

p−1
aψb

p−1
ψ Eψ,λ̂(ψ)n01

= s(ψ)− (1− (1− bψ)k)aψb
−1
ψ Eψ,λ̂(ψ)n01,

with bias

Eψ,λs
(k)
a = aψ(1− bψ)kEψ,λn01.

For all k, the bias has the same sign as ψ and, since 0 < bψ < 1, decays monotonically to zero at a geometric

rate in k. Letting k →∞, we find

sa(ψ) =
n01

1 + eψ
− n10

1 + e−ψ
= sc(ψ),

where sc(ψ) is the score function of the conditional log-likelihood. Thus, fully iterating the bias adjustment

of the profile score leads to the conditional likelihood. Accordingly, ψ̂a = log(n01/n10), the conditional

maximum likelihood estimator.

It may be remarked that, in this model, the fully iterated adjustment can also be obtained without

iterating, essentially as in Case (b). First rescale s(ψ) as

q(ψ) =
s(ψ)

n01 + n10
=

n01
n01 + n10

− 1

1 + e−ψ/2
,

assuming n01 + n10 > 0. As n→∞, q(ψ) converges in probability to

q∞(ψ) =
1

1 + e−ψ
− 1

1 + e−ψ/2

for any sequence λ1, λ2, . . . for which Eψ,λn01/n converges. Since q∞(ψ) is free of λ, qa(ψ) = q(ψ)− q∞(ψ)

is a bias-adjusted version of q(ψ). This yields qa(ψ) = sc(ψ)/(n01 + n10), again leading to the conditional

maximum likelihood estimator.

Now consider the following generalization. Suppose Pr(yi1 = 1) = G(λi) and Pr(yi2 = 1) = G(λi + ψ),

where G is a distribution function with a density g that is symmetric about zero, unimodal, continuous, and

non-zero everywhere. A conditional likelihood that is free of λ exists only when G is logistic, as above. The

profile score and the adjusted profile score are

s(ψ) = (n01 −Q(ψ/2)n10) cψ,

sa(ψ) =
(
n01 −Q(ψ/2)2n10

)
dψ,

where Q(z) = G(z)/G(−z), cψ = g(ψ/2)/G(ψ/2), and dψ = g(ψ/2)Q(−ψ/2)/(G(ψ/2)2 + G(−ψ/2)2); the

derivation is given in the Appendix. It follows that sa(ψ) is unbiased if and only if

Eψ,λn01
Eψ,λn10

= Q(ψ/2)2,
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regardless of λ. Therefore, unbiasedness requires that

Eψ,λn01
Eψ,λn10

=

∑
iG(−λi)G(λi + ψ)∑
iG(λi)G(−λi − ψ)

be free of λ. Setting all λi equal gives the requirement

Q(λi + ψ)

Q(λi)
= h(ψ)

for some function h. Setting λi = 0 gives h(ψ) = Q(ψ) and hence

Q(λi + ψ) = Q(λi)Q(ψ),

whose solution is of the form Q(z) = eγz and, therefore, G(z) = (1 + e−γz)−1 is logistic. When G is logistic,

sa(ψ) is unbiased, as shown earlier. When G is not logistic, Eψ,λn01/Eψ,λn10 is not free of λ and, therefore, ψ

is not point identified everywhere and an unbiased estimating equation does not exist; see also Chamberlain

(1980, 2010).

Figure 1. Asymptotic biases in the probit model, m = 2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

ψ

Asymptotic bias of ψ̂ (solid) and ψ̂a (dashed) when λi ∼ N(0, 1) and G is standard normal.

When G is not logistic, the asymptotic bias of ψ̂ and ψ̂a can be signed. Suppose ψ > 0 (the case ψ < 0

follows by symmetry). Given Q−1(z) = G−1(z/(1 + z)), we have

ψ̂ = 2G−1
(

n01/n10
1 + n01/n10

)
,

ψ̂a = 2G−1

( √
n01/n10

1 +
√
n01/n10

)
.

Assume that Eψ,λn01/n converges, so that the probability limits of ψ̂ and ψ̂a exist. Now, since Q(λi +

ψ)/Q(λi) ≥ Q(ψ/2)/Q(−ψ/2), with equality if and only if λi = −ψ/2,

Eψ,λn01
Eψ,λn10

≥ Q(ψ/2)2.

Therefore, plimn→∞ψ̂ > plimn→∞ψ̂a ≥ ψ, with equality if and only if λi = −ψ/2 for almost all i. Hence,

although ψ̂a is generally inconsistent, it improves on maximum likelihood uniformly across the parameter
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space. Figure 1 illustrates the improvement for the case where λ1, λ2, . . . are drawn independently from

N(0, 1) and G is the standard normal distribution function. The curves are the asymptotic biases of ψ̂

(solid) and ψ̂a (dashed). The asymptotic bias of ψ̂a is small when most of the |λi+ψ/2| are only moderately

large, but is unbounded since Q(λi + ψ)/Q(λi)→∞ as λi → ±∞.

Binary autoregressive pairs. Consider n independent pairs yi = (yi1, yi2) of binary variables with

success probabilities

Pr(yi1 = 1) = (1 + e−λi)−1,

Pr(yi2 = 1|yi1) = (1 + e−λi−ψyi1)−1.

This is an autoregressive logit model with yi0 = 0 for all i. Point identification of ψ in this setting requires

at least triplets of observations (Cox 1958; Honoré and Tamer 2006). Here, we examine the profile score

adjustment when only pairs of data are available.

Pairs of the form yi = (0, 0) or yi = (1, 1) give λ̂i(ψ) = −∞ and λ̂i(ψ) = +∞, respectively, with

li(ψ) = si(ψ) = 0 for such pairs. The pairs yi = (0, 1) give λ̂i(ψ) = 0, li(ψ) = − log 4, and si(ψ) = 0. Only

the pairs yi = (1, 0), for which λ̂i(ψ) = −ψ/2, contribute the the profile likelihood. Let n01 and n10 be the

number of (0, 1) and (1, 0) pairs. The profile log-likehood and score are

l(ψ) = −2n10 log(1 + eψ/2),

s(ψ) = −n10(1 + e−ψ/2)−1,

and the maximum likelihood estimator of ψ (assuming n10 > 0) is −∞. The expectations of n01 and n10 are

Eψ,λn01 =
∑
i

(1 + eλi)−1(1 + e−λi)−1,

Eψ,λn10 =
∑
i

(1 + e−λi)−1(1 + eλi+ψ)−1.

Evaluating these at λi = λ̂i(ψ), we obtain

Eψ,λ̂(ψ)n01 = 4−1n01 + (1 + eψ/2)−1(1 + e−ψ/2)−1n10,

Eψ,λ̂(ψ)n10 = 2−1(1 + eψ)−1n01 + (1 + eψ/2)−2n10,

from which it follows that

E
(k)

ψ,λ̂(ψ)

(
n01
n10

)
= Bkψ

(
n01
n10

)
, k = 1, 2, . . . ,

where

Bψ =

(
4−1 (1 + eψ/2)−1(1 + e−ψ/2)−1

2−1(1 + eψ)−1 (1 + eψ/2)−2

)
.

Hence, writing the profile score as

s(ψ) = aψ

(
n01
n10

)
, aψ =

(
0 −(1 + e−ψ/2)−1

)
,

the kth order adjusted profile score follows as

s(k)a (ψ) = aψ(I −Bψ)k
(
n01
n10

)
.

The eigenvalues of I − Bψ are less then one in absolute value, so sa(ψ) = 0 for every ψ. Unlike the case

discussed in the previous example, the lack of point identification in this case results in sa(ψ) being uninfor-

mative about ψ. However, the equation s
(k)
a (ψ) = 0 has a unique solution, ψ̂(k), for every value of the ratio
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n01/n10, and this solution converges as k →∞. The limit solution, derived in the Appendix, is

ψ̂a = g−1(n01/n10)

where

g(ψ) = uψ +
√
u2ψ + vψ,

uψ = (1 + eψ)(4−1 − (1 + eψ/2)−2),

vψ = 2(1 + eψ)(1 + eψ/2)−1(1 + e−ψ/2)−1.

While inconsistent, ψ̂a improves rather drastically on maximum likelihood. Figure 2 shows its asymptotic

bias for the case where λ1, λ2, . . . are drawn independently from N(0, 1). The bias is uniformly small over

the range of values of ψ considered.

Figure 2. Asymptotic bias in the autoregressive logit model, m = 2

0 0.5 1 1.5 2 2.5 3
−0.08

−0.06

−0.04

−0.02
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0.02

0.04

ψψ

Asymptotic bias of ψ̂a when λi ∼ N(0, 1).

Negative binomial regression. Let yij be a negative binomial random variable with mean µij =

λi exp(x>ijψ1) and variance µij + µ2
ij/ψ2. The parameter ψ−12 ≥ 0 is an overdispersion parameter, with

ψ2 →∞ yielding Poisson regression. The probability mass function is

f(yij ;ψ, λi) =
Γ (ψ2 + yij)

Γ (ψ2) Γ (yij + 1)

(
µij

µij + ψ2

)yij ( ψ2

µij + ψ2

)ψ2

.

λ̂i(ψ) satisfies the equation
∑
j gij(ψ, λ̂i(ψ)) = 0, where

gij(ψ, λi) =
yij − λi exp(x>ijψ1)

ψ2 + λi exp(x>ijψ1)
, λi ≥ 0.

This equation is equivalent to a mth order polynomial equation and has a unique nonnegative root. The

profile score is

s(ψ) =
∑
i,j

(
ψ2gij(ψ, λ̂i(ψ))xij ,

psi(ψ2 + yij)− psi(ψ2) + logψ2 − log(ψ2 + λ̂i(ψ) exp(x>ijψ1))

)
,

with bias

Eψ,λs(ψ) =
∑
i

∞∑
yi1=0

. . .

∞∑
yim=0

si(ψ)
∏
j

f(yij ;ψ, λi).
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For small m the bias can be computed directly. Both components of Eψ,λs(ψ) are non-zero and depend on

ψ, λ, and the covariate values.

Table 1 gives the result of a numerical computation, with the infinite sums in Eψ,λs(ψ) truncated at 400,

for the case m = 2, λi = ψ1 = ψ2 = 1, and (xi1, xi2) = (0, log 2). The overdispersion in this case is large, the

means of yi1 and yi2 being 1 and 2, and the variances 2 and 6, respectively. We computed the finite-order

adjusted profile score bias Eψ,λs
(k)
a (ψ) and plimn→∞ψ̂

(k) = arg solveψ∗{Eψ,λs(k)a (ψ∗) = 0} for k = 0, . . . , 5.

The row k = 0 shows that the profile score bias is very small for ψ1 and large for ψ2. Accordingly, the

probability limits of the maximum likelihood estimates ψ̂1 and ψ̂2 are very close to ψ1 and very different

from ψ2, respectively. This is in line with the simulation results of Allison and Waterman (2002), who found

in various designs with m = 2 that there is hardly indication of incidental parameter bias for ψ1, while the

maximum likelihood estimator of ψ2 was often infinity. The computation here suggests that the adjusted

profile score is unbiased, and the adjusted score estimator consistent.

Table 1. Asymptotic biases in the negative binomial regression, m = 2

asymptotic bias of s
(k)
a (ψ) asymptotic bias of ψ̂

(k)
a

k ψ1 ψ2 ψ1 ψ2

0 (MLE) .00424 .26554 −.0101 52.614
1 .00109 .05083 −.0123 .510
2 .00029 .01224 −.0031 .122
3 .00005 .00342 −.0012 .035
4 −.00003 .00097 −.0008 .010
5 −.00005 .00020 −.0007 .002

λi = ψ1 = ψ2 = 1, (xi1, xi2) = (0, log 2)

3. SIMULATIONS

Table 2 presents the results of a small simulation exercise for the nonlinear models considered above where the

adjusted profile score was obtained in closed form. For simulations in the linear autoregression, see Dhaene

and Jochmans (2015). In all designs, we set n = 500 and m = 2. The regression models were run with a

single regressor, generated as xij ∼ N(0, 1), and λi ∼ U(.5, 1.5). For the binary pairs, we generated data

with λi ∼ N(0, 1). We set ψ as indicated in the table. The table reports the mean and standard deviation,

estimated from 10,000 Monte Carlo replications, of the maximum likelihood estimator, ψ̂, and the adjusted

score estimator, ψ̂a. The results derived above are confirmed. Whenever there is incidental-parameter bias,

the adjusted profile score eliminates it, except in the probit binary-pair and the logit autoregressive-pair

cases, where ψ is not point identified and a small bias remains, in line with the theory.

CONCLUSION

In models featuring incidental parameters, the profile score is often biased, which leads to inconsistent

maximum-likelihood estimates under Neyman-Scott asymptotics. It is natural, then, to seek to remove

this bias, as proposed by Neyman and Scott (1948) and McCullagh and Tibshirani (1990). In this paper,

we propose to iterate the bias adjustment of Neyman and Scott (1948). The intuition for iterating the

adjustment lies in asymptotic (i.e., large m) arguments. As the iteration proceeds, the bias of the adjusted
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Table 2. Simulations, n = 500,m = 2 (10,000 replications)

mean std

ψ ψ̂ ψ̂a ψ̂ ψ̂a

Poisson regression 1 1.002 1.002 .051 .051
exponential regression 1 1.000 1.000 .055 .055
Weibull regression 1 1.000 1.000 .037 .037

1.5 2.531 1.504 .095 .056
gamma regression 1 .999 .999 .042 .042

1.5 2.759 1.508 .163 .084
inverse Gaussian regression 1 .999 .999 .051 .051

1.5 3.018 1.509 .192 .096
binary matched pairs (logit) 1 2.017 1.009 .310 .155
binary matched pairs (probit) 1 2.070 1.072 .225 .124
binary autoregressive pairs (logit) 1 — 1.016 — .246

regressions: xij ∼ N(0, 1), λi ∼ U(.5, 1.5); binary pairs: λi ∼ N(0, 1)

profile score becomes less and less dependent on the incidental parameters, all the more so as m grows. It

is not guaranteed that, with finite (and possibly very small) m, the full iteration, provided that the limit

exists, delivers a consistent estimate under Neyman-Scott asymptotics. We find, however, that this is often

the case, either because the profile-score bias is free of incidental parameters, so that no iteration is needed,

or because the fully iterated adjusted profile score exists, is unbiased, and not identically zero.

APPENDIX

Weibull regression. Write the profile score as

s(ψ) =
∑
i,j

(
ψ2

∑
j zijxij/

∑
j zij − ψ2xij

ψ−12 + ψ−12 log zij − ψ−12

∑
j zij log zij/

∑
j zij

)

with zij = wij(ψ)λ−ψ2

i = (yit/µit)
ψ2 being independent unit-exponential random variables. The first com-

ponent of s(ψ) has zero expectation, as in the exponential regression case. For the second component, write∑
j zij = zij +A, where A =

∑
j′ 6=j zij′ is independent of zij and is Erlang distributed with shape parameter

m− 1 and scale parameter 1. The density of A is gA(a) = am−2 exp(−a)/(m− 2)!, so

E

(
zij log zij∑

j zij

)
=

∫ ∞
0

∫ ∞
0

z log z

z + a
exp(−z)a

m−2 exp(−a)

(m− 2)!
dz da =

m− 1−mγ
m2

,

where γ is Euler’s gamma. Setting m = 1 gives E log zij = −γ. Hence the second component of s(ψ) has

expectation nψ−12 . Now let ψ′ = (ψ1, ψ
′
2), with arbitrary ψ′2 > 0. The first component of s(ψ′) is

sψ1
(ψ′) =

∑
i,j

ψ′2

(∑
j z
′
ijxij∑
j z
′
ij

− xij

)

with z′ij = z
ψ′2/ψ2

ij and zij as above. It follows that Eψ,λs1(ψ′) = 0.

Gamma regression. Write the profile score as

s(ψ) =
∑
i,j

(
ψ2

∑
j zijxij/

∑
j zij − ψ2xij

−psi(ψ2) + log(mψ2) + log zij − log
∑
j zij

)
,
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zij = yij/µij being independent gamma distributed random variables with shape parameter ψ2 and scale

1. By the same argument as in the exponential regression model, the first component of s(ψ) has zero

expectation. Given that E log zij = psi(ψ2) and that
∑
j zij is gamma distributed with shape parameter

mψ2 and scale 1, the second component of s(ψ) has expectation nm(log(mψ2)−psi(mψ2)). This expectation

is O(n) uniformly in m because m(log(mψ2)− psi(mψ2)) = (2ψ2)−1 +O(m−1) as m→∞.

Inverse Gaussian regression. Write µ̂ij as

µ̂ij = µij
λ̂i(ψ)

λi
= µij

∑
j yijλ

−2
i exp(−2x>ijψ1)∑

j λ
−1
i exp(−x>ijψ1)

= µij

∑
j yijµ

−2
ij∑

j µ
−1
ij

= c−1µij
∑
j

zij

where zij = yijµ
−2
ij and c =

∑
j µ
−1
ij . Denote the distribution of yij as IG(µij , ψ2). Then, by properties of

the inverse Gaussian distribution derived by Tweedie (1957),

zij ∼ IG(µ−1ij , µ
−2
ij ψ2),

∑
j
zij ∼ IG

(
c, c2ψ2

)
, µ̂ij ∼ IG (µij , µijcψ2) ,

and

Eyij = µij , Ey−1ij = µ−1ij + ψ−12 , Eµ̂−1ij = µ−1ij + µ−1ij c
−1ψ−12 .

Hence

E
∑

i,j
(y−1ij − µ̂

−1
ij ) = n(m− 1)ψ−12 . (A.1)

We now calculate the expectation of zij/S
2, where S =

∑
j zij . The joint moment generating function of zij

and S is

MGFzij ,S(t1, t2) = E exp(t1zij + t2S)

= exp
(
ψ2c− µ−1ij

√
ψ2(ψ2 − 2t1 − 2t2)− (c− µ−1ij )

√
ψ2(ψ2 − 2t2).

)
Following Cressie et al. (1981), we obtain

E
zij
S2

=

∫ ∞
0

t2 lim
t1→0

∂

∂t1
MGFzij ,S(t1,−t2)dt2 = µ−1ij

1 + cψ2

c3ψ2
.

Hence, from yij µ̂
−2
ij = c2zijS

−2, we have

E(yij µ̂
−2
ij − µ̂

−1
ij ) = 0. (A.2)

On writing the second component of s(ψ) as

mn(2ψ2)−1 −
∑
i,j

2−1(yij µ̂
−2
ij − µ̂

−1
ij + y−1ij − µ̂

−1
ij ),

Eψ,λs(ψ) follows from (A.1) and (A.2).

Binary matched pairs. Since g is symmetric about zero and unimodal, λ̂i(ψ) = −ψ/2. The profile

log-likelihood and score are

l(ψ) = 2n01 logG(ψ/2) + 2n10 logG(−ψ/2),

s(ψ) = n01
g(ψ/2)

G(ψ/2)
− n10

g(ψ/2)

G(−ψ/2)

= (n01 −Q(ψ/2)n10) cψ.
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Given

Eψ,λn01 =
∑
i

G(−λi)G(λi + ψ),

Eψ,λn10 =
∑
i

G(λi)G(−λi − ψ),

we have

Eψ,λ̂(ψ)n01 = (n01 + n10)α01, α01 = α01(ψ) = G(ψ/2)2,

Eψ,λ̂(ψ)n10 = (n01 + n10)α10, α10 = α10(ψ) = G(−ψ/2)2,

and, for general k,

E
(k)

ψ,λ̂(ψ)
n01 = α01E

(k−1)
ψ,λ̂(ψ)

(n01 + n10) = α01(α01 + α10)k−1(n01 + n10)

= (α01 + α10)k−1Eψ,λ̂(ψ)n01,

E
(k)

ψ,λ̂(ψ)
n10 = (α01 + α10)k−1Eψ,λ̂(ψ)n10.

Therefore, with s(ψ) witten as

s(ψ) = β01n01 + β10n10, β01 = β01(ψ) =
g(ψ/2)

G(ψ/2)
, β10 = β10(ψ) =

g(ψ/2)

G(−ψ/2)
,

we have

E
(k)

ψ,λ̂(ψ)
s(ψ) = (α01 + α10)k−1(β01Eψ,λ̂(ψ)n01 − β10Eψ,λ̂(ψ)n10)

= (α01 + α10)k−1(α01β01 − α10β10)(n01 + n10)

and

s(k)a (ψ) = s(ψ)−
k∑
p=1

(
k

p

)
(−1)

p−1
(α01 + α10)p−1(α01β01 − α10β10)(n01 + n10)

= s(ψ)−
(
1− (1− α01 − α10)k

)(α01β01 − α10β10
α01 + α10

)
(n01 + n10).

Given that 0 < α01 + α10 < 1, we obtain

sa(ψ) = s(ψ)−
(
α01β01 − α10β10

α01 + α10

)
(n01 + n10)

=
(
n01 −Q(ψ/2)2n10

)
dψ.

Binary autoregressive pairs. Write Bψ as

Bψ =

(
a b
c d

)
,

where a = 4−1 and b, c, d are functions of ψ, and decompose I −Bψ as P∆P−1, where

∆ =

(
δ1 0
0 δ2

)
, δ1 = 1− (a+ d−D)/2, δ2 = 1− (a+ d+D)/2,

P =

(
(a− d−D) /(2c) (a− d+D) /(2c)

1 1

)
,

P−1 =

(
−c/D (a− d+D)/(2D)
c/D −(a− d−D)/(2D)

)
,

and D =
√

(a− d)2 + 4bc. Note that 1 > δ1 > δ2 > 0. For given k, ψ̂
(k)
a solves

aψ(I −Bψ)k
(
n01
n10

)
= 0,
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where the first element of aψ is zero. Given (I −Bψ)k = P∆kP−1, this equation is equivalent to

δk1 (g − n01/n10) + δk2 (h+ n01/n10) = 0

where g = (a − d + D)/(2c) and h = −(a − d −D)/(2c). As k → ∞, the first term dominates. Hence, the

limiting solution solves g = n01/n10, that is, g(ψ) = n01/n10, on writing g as a function of ψ.
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